Optimal Execution Under Jump Models For
Uncertain Price Impact*!

Somayeh Moazeni ¥ Thomas F. Coleman * Yuying Li T
May 12, 2011
Abstract

In the execution cost problem, an investor wants to minimize the total expected cost and risk in the
execution of a portfolio of risky assets to achieve desired positions. A major source of the execution cost
comes from price impacts of both the investor’s own trades and other concurrent institutional trades.
Indeed price impact of large trades have been considered as one of the main reasons for fat tails of
the short term return’s probability distribution function. However, current models in the literature on
the execution cost problem typically assume normal distributions. This assumption fails to capture
the characteristics of tail distributions due to institutional trades. In this paper we provide arguments
that compound jump diffusion processes naturally model uncertain price impact of other large trades.
This jump diffusion model includes two compound Poisson processes where random jump amplitudes
capture uncertain permanent price impact of other large buy and sell trades. Using stochastic dynamic
programming, we derive analytical solutions for minimizing the expected execution cost under discrete
jump diffusion models. Our results indicate that, when the expected market price change is nonzero,
likely due to large trades, assumptions on the market price model, and values of mean and covariance of
the market price change can have significant impact on the optimal execution strategy. Using simulations,
we computationally illustrate minimum CVaR execution strategies under different models. Furthermore,
we analyze qualitative and quantitative differences of the expected execution cost and risk between
optimal execution strategies, determined under a multiplicative jump diffusion model and an additive
jump diffusion model.

Keywords: uncertain price impact, execution cost problem, stochastic dynamic programming, jump
diffusion models

1 Introduction

Investment performance is substantially related to the execution cost (Yang and Borkovec (2005)), which is
the difference in the value between an ideal trade and the actual implementation (Almgren (2008)). The
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execution cost is comprised of explicit costs, such as commissions, and implicit costs, which are more difficult
to characterize. Implicit costs are mainly due to price impact of trading by investors, and can be quite
significant in large trades. As a result controlling execution costs becomes crucial for institutional traders,
whose trades often comprise a large fraction of the average daily volume. To decrease price impact, trades
are typically broken up into smaller packages (Chan and Lakonishok (1995)), which are executed over a short
time horizon. Such a sequence of trades is called an execution strategy. However, the size of each package
nonetheless remains large enough to induce a significant price change (Gabaix et al. (2006)).

Two distinctive types of price impact, the permanent price impact and the temporary price impact, are
considered in the literature, see, e.g., (Holthausen et al., 1987; Barclay and Litzenberger, 1988; Holthausen
et al., 1990; Barclay and Warner, 1993; Chan and Lakonishok, 1993, 1995; Almgren and Chriss, 2000/2001;
Moazeni et al., 2010). The temporary price impact mainly comes from the liquidity cost, i.e., an additional
price an investor pays for immediate execution of the trade (Focardi and Fabozzi (2004)); it affects the
execution price at the moment of trading. In contrast, the permanent price impact moves the future market
price, due to the imbalance between supply and demand and the information transmitted to the market.

Price impact is often modeled as a function of the trading rate, see, e.g., (Almgren and Chriss, 2000/2001).
temporary and permanent price impact functions, along with the market price dynamics, determine the
execution cost of each execution strategy. Given the market price model and price impact functions, an
investor (decision maker) wants to determine an ezecution strategy to minimize the expected execution cost
and possibly some measure of risk.

There is a large body of literature on the execution cost problem, see, e.g., (Huberman and Stanzl,
2004) and references therein, each of which deals with a particular model for price dynamics. In (Almgren
and Chriss, 2000/2001), a static execution strategy is determined to minimize the mean and variance of the
execution cost when market price evolves according to a Brownian diffusion process. Moazeni et al. (2010)
study the sensitivity of this static optimal execution strategy to the change in the parameters of linear
price impact functions under the same setting; an upper bound for the change of the execution strategy is
established mathematically.

The typical assumption of a continuous or discrete Brownian motion market price model for the execution
cost problem is questionable. In particular it fails to capture the impact of large trades from other institutions
concurring during the course of the execution. Analogous to the fact that one’s own large trade causes a
discrete market price change, a large trade from others also induces a permanent (uncertain) price impact on
the market price. These uncertain permanent price impact of other large trades should however be modeled
appropriately in the market price dynamics when seeking an optimal execution strategy and evaluating the
risk associated with an execution strategy. Unfortunately current quantitative analysis of the execution cost
does not explicitly model this source of price depression; only the permanent price impact of the decision
maker’s own trade is explicitly considered. Indeed, the normal distribution assumption contradicts the well
recognized empirical evidence that the short term (a day or less) asset return probability distribution function
typically has fat tails, see, e.g., (Campbell et al., 1996; Pagan, 1996; Cont, 2001).

There are relatively few studies on the execution cost problem under a model which accounts for price
impact of other concurrent large trades. Carlin et al. (2007) develop a repeated game of complete information
to model repeated interaction of price impact of large investors who attempt to minimize the expected
execution cost. This model however relies on the assumptions that participants are strategic, and their
trading strategies and their overall trading target are common knowledge. In (Almgren and Lorenz, 2006),
a Bayesian approach is proposed to introduce information on other large trades based on the observed price.
This approach implicitly assumes that traders use VWAP-like strategies rather than the arrival price so that
their trading is not front-loaded. In addition, the market price is still modeled through normal distributions.
Thus risk assessment under this model, particularly the tail risk, is likely to be inaccurate. Note that, in both
studies, no risk consideration is given in devising an optimal execution strategy. In Alfonsi et al. (2008) and
Alfonsi et al. (2010), optimal execution strategies in order books are considered; the authors also mentioned,
without any explicit discussion, that perhaps jump models for the market price should be considered.



In this paper, we make no assumption about the decision maker’s knowledge of other institutions’ trading
targets or their execution strategies. Thus, arrivals and price impact of other large trades are uncertain.
We investigate reasonable models for this uncertainty and their effect on the optimal execution strategy and
execution risk. The main contributions of this paper include the following:

e Following the methodology in market microstructure theory in which uncertainty in order arrivals
over time are modeled by Poisson processes, e.g., see (Garman, 1976), we explicitly model uncertain
permanent price impact of other large trades using compound Poisson processes. Jump events, in this
model, represent uncertain arrivals of other large trades and random jump amplitudes represent their
uncertain permanent price impact. In the proposed model the market price evolution is defined by
the summation of a continuous diffusion process (for "normal” trades) and two compound Poisson
processes for permanent price impact of large buy and sell trades. Our proposed model accounts for
discrete large changes in the market price to better capture the fat tails in the probability distribution
of the price due to concurrent large trades by other institutions.

e Since the first concern in portfolio execution is the expected cost, we derive explicit formulae for optimal
execution strategies to minimize the expected execution cost (optimal risk neutral execution strategies),
under discrete additive jump diffusion models as well as multiplicative jump diffusion models with linear
price impact functions. The additive diffusion model without jumps has been used previously in the
literature (e.g., see Almgren and Chriss (2000/2001)). Since the stock price is typically modeled by a
multiplicative model, we also consider multiplicative models with jumps. We analyze implications of
model assumptions on the optimal execution strategies, execution cost, and execution risk. In addition
we apply a computational method to determine the optimal execution strategy which minimizes the
CVaR of the execution cost, assuming a strategy is deterministic.

e We compare the execution cost distribution and risk values for the optimal risk neutral execution
strategy under a mean and volatility-adjusted diffusion model and the jump diffusion model. We
illustrate that for quantitative assessment of risk, model assumption can make a significant difference,
particularly with respect to the assessment of extreme risk. Therefore, using an appropriate model is
crucial in evaluating the risk exposure associated with an execution strategy, even for a risk neutral
investor who seeks a strategy which solely minimizes the expected execution cost. Furthermore, when
a risk measure such as CVaR is minimized, the optimal solutions under the two models are different
and the execution risk can be underestimated by a Brownian diffusion process with no jump.

Our theoretical and computational investigation also establishes the following result and observations.
Firstly, under an additive diffusion market price model and with linear price impact functions, it has been
noted that (e.g., see Bertsimas and Lo (1998)), when the expected market price change is zero, the optimal
risk neutral execution strategy is the naive strategy of trading an equal amount in each period. We generalize
this result by proving that, when the expected market price change aside from the permanent price impact
of the decision maker’s own trade is zero, the optimal risk neutral execution strategy derived from stochastic
dynamic programming is always static, unrelated to the specification of the market price evolution. Moreover,
for stationary linear price impact functions this static strategy is reduced to the naive strategy. Unless
otherwise stated explicitly, in this paper, we simply refer to the expected market price change aside from the
permanent price impact of the decision maker’s own trade as the expected market price change.

Secondly, when the expected market price change is nonzero, specification of the market price evolution
matters and the optimal execution strategy derived under each model can be significantly different from the
naive strategy. The optimal risk neutral execution strategy obtained under the additive jump diffusion model
is static and independent of the asset price volatility. In contrast, the optimal risk neutral execution strategy
under the multiplicative jump diffusion model is dynamic and depends on the market price realization.
Hence, this execution strategy adjusts the trading size according to the trading impact of other investors
realized during the previous periods. In addition, the optimal risk neutral execution strategy under the
multiplicative jump diffusion model depends on the covariance matrix.



Finally, we investigate the degree if suboptimality of both the naive strategy and the optimal risk neutral
execution strategy under the additive jump diffusion model in terms of the expected execution cost. We
observe that the expected execution cost associated with the optimal risk neutral execution strategy obtained
under the multiplicative jump model can be significantly less than the expected execution cost of the naive
strategy. Moreover, its expected execution cost can be notably smaller than that of the execution strategy
optimal under the additive jump model with comparable expected market price change and volatility. This
is particularly true as the asset return volatility or the trading horizon increases.

The paper is organized as follows. In §2, we motivate and describe the proposed jump process to capture
uncertain permanent price impact of other large institutions. We present the mathematical formulation for
the execution cost problem in §3. In this section, we also provide closed-form expressions for the optimal
execution strategies under an additive jump diffusion model and a multiplicative jump diffusion model. The
computational method to minimize the CVaR of the execution cost in described in §4. In §5, simulations
are carried out to compare different execution strategies and model assumptions in terms of the expected
execution cost and risk assessment. Concluding remarks are presented in §6.

2 Jump Processes for Uncertain Price Impact of Large Trades

In this paper, similar to (Bertsimas and Lo, 1998; Almgren and Chriss, 2000/2001; Huberman and Stanzl,
2004), our presentation mainly follows the discrete time framework since the analytic formula for optimal
risk neutral execution strategy is presented under a discrete time model. We also analyze the execution
risk in discrete time setting. We note that the continuous time optimal execution problem for the single
asset has also been widely studied, see, e.g., (Forsyth, 2010). The rational for the jump process can also be
appreciated in contrasted to a continuous time Brownian model.

Without loss of generality, we assume that an investor (decision maker) plans to liquidate his holdings

in m assets during N periods in the time horizon T. Let t¢ = 0 < t; < -+ < ty = T, where 7 def
ty —tp_1 = % for k = 1,2,..., N. The decision maker’s position at time t; is denoted by the m-vector
i = (T1k, X2ky - oy xmk)T, where x;; is the decision maker’s holding position in the number of units in the

ith asset at time 5, We assume that the decision maker’s initial position is #o = S shares and final position
is xxy = 0. The difference between positions at two consecutive times t;_1 and t; is denoted by an m-vector
nj, where

N = Tg—1— Tk, k’:l,?,...,N. (21)

Negative n;; implies that the ¢th asset is bought between ¢;_; and #;. We refer to a sequence {nk}ff:l
satisfying Zi\;l ny = S as an execution strategy.

Let the m-vector P, denote the unit market price at time t;. The deterministic initial market price is
denoted by Py. Similar to (Almgren and Chriss, 2000/2001), we assume that the permanent price impact of
the decision maker’s trade is a deterministic function g (-) of the trading rate:

Nk

Pk:fk—l(Pk—l)_Tg( ), k=1,2,...,N -1, (2.2)

-
where Fj,_1(Px_1) denotes the market price at time t;; when the decision maker does not trade in (t5_1,%].
Similar to (Bertsimas and Lo, 1998; Almgren and Chriss, 2000/2001; Huberman and Stanzl, 2004), the form
of the permanent impact function suggests it as a function of trading amount in a period. Further discussion
on properties of the permanent impact function g (-) can be found in Huberman and Stanzl (2004). For
optimal execution in the continuous framework, the permanent impact function may need to be a function
of trading rate.

For the execution cost problem, the random variable Fj,_1(Pg_1) is typically characterized by a normal
random variable corresponding to an increment of a Brownian motion process. When the expected market



price change is zero, the optimal risk neutral execution strategy is the naive strategy under many market
price dynamics (e.g., see Moazeni et al. (2010), Bertsimas and Lo (1998), Huberman and Stanzl (2005)).
This observation may suggest that one needs not be concerned with the specification of the market price
dynamics (or price impact functions). However, secondary to the expected execution cost, the risk of the
execution cost is another main concern for investors. Accurate assessment of the execution risk associated
with an execution strategy needs an accurate model for the market price. In addition, based on 15 minutes
returns of 1000 largest U.S. assets in several international indices, Gabaix et al. (2006) show that trades of
large institutions cause nonzero expected short term market price changes.

Furthermore, empirical evidence indicates that the distribution of the short term asset return typically
has fat tails, see, e.g., (Campbell et al., 1996; Pagan, 1996; Cont, 2001). One likely reason for the fat tail
distribution is the price impact of trades from institutions. Gabaix et al. (2006) show that trades of large
institutions generate excess asset price volatility.

There is an additional contradiction in modeling market price dynamics as a Brownian motion; this
contradiction can be better seen in the context of a continuous time framework. When the market price
is modeled by a continuous process, permanent price impact of the decision maker’s own trade causes a
discrete change in the market price while the impact of large trades from other institutions maintains price
continuity.

In this paper we assume that the arrival time of large trades from other institutions as well as their
impact are unknown to the decision maker. Following the approach proposed in Garman (1976), we model
these uncertain arrivals using Poisson processes with constant arrival rates. The arrival of each trade induces
an unknown permanent price impact and causes a jump in the market price. We use a random jump size
to model the uncertain impact; the jump size is assumed to follow a known distribution. Combining this
with uncertain arrivals, the uncertain price impact of uncertain trades from other institutions are modeled
by compound Poisson processes. Including compound Poisson processes in the market price dynamics yields
a price distribution with fatter tails than that of a normal distribution. The proposed model is likely to be
a more accurate representation for the trading activities of institutional investors.

To further distinguish buys from sells, we assume that arrivals of buy and sell trades are independent
Poisson processes with deterministic arrival rates. For simplicity, we first consider a single asset trading,
and then generalize the model to trading of multiple assets. Let {X; : ¢ € [0,T]} be a Poisson process in the
execution horizon [0, T] with a constant arrival rate A, > 0. The process {X;} models uncertain arrivals of
sell trades from other institutions. Similarly, a Poisson process {Y; : t € [0, T]} with a constant arrival rate
Ay > 0 represents arrivals of buy trades. Processes {X;} and {Y;}, respectively, count the number of sell
and buy events during the time period [0,¢). Initially Xo = 0 and Y5 = 0. We assume that processes {X;}
and {Y;} are independent of each other.

Using the Poisson processes {X;} and {Y;}, we model uncertain permanent price impact of trades by
other institutions in [t;_1,%x) as below:

Yy, =Yy, Xy =Xty
TJEE S k- Y m, (2.3)
=1 =1

where x;(k) and 7,(k) are random variables with known distributions. When the upper limit of a summation
in (2.3) is zero, the summation itself is zero.

For every period k, the random variable 7, (k) represents the permanent price impact of the £th sell trade
in [tg—1,tx). We assume that the random variables {m;(k)} are independently distributed with the mean
te (k) and standard deviation o, (k). Similarly, the random variable x,(k) captures the permanent price
impact of the fth buy trade in period k. The random variables {x/(k)} are assumed to be independently
distributed with mean and standard deviation p, (k) and o, (k), respectively.

Using two separate compound Poisson processes in equation (2.3) provides the flexibility to choose



different arrival rates and distributional characteristics for permanent price impact of buys and sells from
other institutions. Distinguishing permanent price impact of sell trades and buy trades by their arrival
rates or distributions for the jump sizes is similar to the double jump diffusion process for modeling asset
price dynamics (e.g., see Ramezani and Zeng (2007) and references therein). Furthermore, empirical studies
on institutional trades indicate that market reacts differently to buy and sell orders: buys have larger
permanent price impact than sells (e.g., see Saar (2001) and references therein). Employing two compound
Poisson processes allows us to set (k) > po(k) to capture this market behavior.

The proposed jump diffusion model can be extended to a portfolio of m assets. For each asset ¢ =
1,2,...,m, we similarly define two independent Poisson processes {Xt(l)} and {Yt(l)} with constant arrival

rates /\(xi) and /\g(f), respectively. In this case, J (k) is the m-vector

Y(l)_y(l) X(l)_X(l) Y(m)_y(m) X(m)_X(m) T
def tr th—1 1) tr th—1 1) tr th—1 (m) tr th—1 (m)
J(k) = oo ® - D> wlw, s Y W= Y, w29
=1 =1 =1 =1

We further note that, if necessary, the compound Poisson processes of different assets can be allowed to
include correlations to capture cross-asset relations observed.

For simplicity we assume subsequently that, for every period k, random jump sizes for sell trades at
period k are independent of random jump sizes for buy trades at period k. In addition, we assume that
the jump amplitudes are independent of the Poisson processes, and the compound Poisson processes are
independent of the Brownian motion process used to model normal market price changes.

Below we incorporate jumps in two specifications for the market price dynamics, namely, additive model
and multiplicative model. The additive diffusion process has been used frequently in the literature on the
execution cost problem (e.g., see Almgren and Chriss (2000/2001)); this is mainly due to the simplicity of
the additive model which leads to determination of the optimal execution strategy in the early literature. In
practice, a multiplicative model is more accurate in modeling the stock price and it has been more widely
adopted in the finance literature for asset price modeling.

Additive Jump Diffusion Models. Here we assume that the change in the market price comes from a
Brownian increment and a jump J?(k), which represents permanent price impact of other large trades:

Fio1(Po_1) = Po_y + 72527, 4 1ad + T2(k). (2.5)

The m-vector Tad can be interpreted as the expected price change due to small trades, which is likely to
be negligible. The random vector Z; is an [-vector of independent standard normals, and X is an m X [
volatility matrix of the asset price changes. Based on high frequency financial price data, it has been noted
in McCulloch and Tsay (2001) that significant percentages of trades lead to no price change. Similarly, we
decompose the market price change into random shocks which lead to no expected price change, and jump
events that cause a nonzero expected price change. Notice that we have used the superscript a to distinguish
the model parameters in the additive model (2.5) from those of multiplicative model subsequently presented.
Throughout this paper bold superscripts of matrices and vectors should not be considered as exponents.

Together with the price impact of the decision maker’s own trade, the market price dynamics is:

P.= P+ 7Y%x27, + Tod + J*(k) — g (n—k) , where (2.6)
T
Yy, =Yy, X=Xty
J2(k) = Z G (k) — Z m(k), fork=1,2,...,N.
=1 j=1

We use E% (k) and Cov? (k) to refer to E(J2(k)) and Cov(J?(k)), respectively. In the additive market price
dynamics (2.6), the total market price change is decomposed into two components, one due to small trades,



captured by Taf + /2527, and the other due to the permanent price impact of large trades, modeled
by J®(k). Whence, the total expected market price change in each trading interval becomes ra§ + E% (k).
Since Zj and J2(k) are assumed to be independent, the covariance of the total market price change in the
kth period equals ¥*(X2)7 4 Cov?¥ (k).

Multiplicative Jump Diffusion Models. In practice, one often explicitly models return rather than price
change; here we incorporate jump in such a model. Let the market return, aside from the permanent price
impact of the decision maker’s trades, be characterized by a normal distribution plus uncertain permanent
price impact of other large trades. In the single asset trading context, this corresponds to

Fr—1(Py—1) — Pr—1

=rag* + rii2ymy T (k),
Py

or equivalently

Fro1(Pee1) = Py (1 tora® g rt2Emy, o jm(k)) . (2.7)

Similarly, the multiplicative jump diffusion model for m assets, together with the price impact of the
decision maker’s own trade, can be described as below:

Py = Diag(Py—-1) (e + Tagt + Fiizym g o jm(k)) —7g (nTk) ,  where (2.8)
Yi, Yt Xy =Xty
TREE ST (PR —e) = Y (7R —e). (2.9)
j=1 j=1

Here, e is the m-vector of all ones and Diag(P;_1) is a diagonal matrix with the m-vector P;_; as its diagonal.
The components of the [-vector Z; are independent standard normals and ¥™ is an m x [ volatility matrix
of the asset returns. The term Taf* can be interpreted as the expected return due to small trades. Here, the
superscript m emphasizes parameters in the multiplicative jump model. Jump amplitudes 71';“(147) and X;“(k)
represent uncertain permanent price impacts, and are assumed to be drawn from known distributions. We
denote the expected value and covariance matrix of 7™ (k) with E'7 (k) and Cov'; (k), respectively.

3 Optimal Execution Strategies

In addition to permanent impact, the decision maker’s trade also induces a temporary price impact on the
execution price. We assume that the m-vector unit execution price Py is given by
n

Pk:Pk_l—h(—), k=1,2,...,N, (3.1)

-
where h(-) is the given temporary impact function.

Linear price impact functions have been well-studied in the market microstructure literature, e.g., see
(Bertsimas and Lo, 1998; Bertsimas et al., 1999; Almgren and Chriss, 2000/2001; Huberman and Stanzl,

2004). Tn this paper, we mostly focus on linear price impact functions which are defined by the temporary
impact matrix H and the permanent impact matrix G, as below:

g(v) = Gv, h(v) = Hov, (3.2)

where v = Z is the trading rate. These impact matrices H and  are the expected price depressions caused
by trading assets at a unit rate.

Given an execution strategy {ng})_,, the total amount received at the end of the time horizon T is

Zi\;l ng Py,. The difference between this quantity and the value of an ideal benchmark trade is the ezecution



cost (Almgren (2008)). The benchmark is commonly taken as the value of the portfolio at the arrival price
Po. Hence, the erecution cost associated with the strategy {ng}_, is defined as PS5 — Zi\;l ngﬁk The
main objective of the decision maker is to minimize the expected execution cost. In addition the decision
maker is concerned with the uncertainty in the total amount that he receives from the trade implementation.
Hence the execution cost problem in the generic form can be described as follows:

N N N
. min_ B (POTS - l;nZPk) +eop (POTS - ;ngpk) 5.t ;nk =5, (3.3)

where p(+) is a risk measure of the execution cost and ¢ > 0 is a risk aversion parameter. The inequality
constraints ng > 0 can also be included in (3.3) to rule out buying in a sell execution.

We first consider here the optimal risk neutral execution strategy when purchasing is allowed, i.e.,

N N
min E (POTS — Z ngﬁk) s.t. Z n, = 5. (3.4)
k=1 k=1

N1y N

We will also analyze properties of the optimal risk neutral execution strategy in terms of both the expected
execution cost and execution risk.

Stochastic dynamic programming has been used to determine the optimal execution strategy when the
market price evolves according to a Brownian motion (e.g., see Bertsimas and Lo (1998), Bertsimas et al.
(1999), Huberman and Stanzl (2005)). The key ingredients of the stochastic dynamic programming for
Problem (3.4) are described below.

Let the optimal-value function at ¢;_; corresponding to Problem (3.4) be

N N
. TG T 5
Vi (Pro1,2p-1) = nk{nlﬁN E| PgS— an P | Po_q, zpa ], st an = Zp_1.
i=k j=k
Here, ng,--- ,nyn are over the set of R™-valued functions of the system state, namely current asset holdings

x,_1 and current market price Py_1.

For k = N, n} = xy_1 since there is no choice but to execute the entire remaining order zy_;. Whence,
for the model (3.1), the optimal-value function for the last period becomes

Vi(Py-1,2n-1) =min E (POTS — n%ﬁN | Pn_1, J:N_l) st rny_1—ny=0 (3.5)
nn
— pTs T, (PN_1 —h (xN‘l)) .
T

For the linear temporary price impact function (3.2), we have

. 1 H+ HT
Vi (Py_1,en-1) = P§ S —xh_ Pv_1+ 51’%—1fo—1' (3.6)
Now assume that nj,, and Vk*+1(ka 21,) have been determined. The optimal execution n} and the optimal-
value function V.*(Px_1,25_1) can be determined from the Bellman’s principle of optimality which relates,
recursively backwards in time, the optimal-value function in period k to the optimal-value function in period

k+1:
V;:(Pk_l,l‘k_l) =min E (—ngﬁk + Vk*_l_l(Pk,l‘k) | Pk—la l‘k_l) .
Nk

Next we present the optimal risk neutral execution strategies under three different model assumptions:
when the expected market price change is zero, additive jump diffusion models, as well as multiplicative jump



diffusion models. associated execution cost distribution. For given impact matrices H and G, we define the
combined tmpact matriz © below:

det 1

0= - (H+H") -G, (3.7)

T

which will be used in the subsequent expressions for optimal execution strategies.

3.1 Effect of a Zero Expected Market Price Change

An optimal execution strategy in general depends on the market price dynamics, i.e., Fj(-) in (2.2). For a
single asset execution under an additive diffusion model with zero expected market price change, the optimal
risk neutral execution strategy is the naive strategy n of liquidating an equal amount in each period, i.e.,

5
N?
see, e.g., (Almgren and Chriss, 2000/2001; Bertsimas and Lo, 1998; Bertsimas et al., 1999; Moazeni et al.,

2010). The assumption that the expected market price change is zero may be reasonable in the absence of
large institutional trades.

k=1,2,...,N, (3.8)

ng =

We now generalize this result to more general model assumptions for the portfolio case in Theorem 3.1.

Theorem 3.1. Let the market price dynamics and the execution price model be given by equations (2.2) and
(3.1), respectively. In addition, assume that

E(Fee1(Pec1) | Poct) = Poq, k=1,2,--- N — 1. (3.9)

Assume further that the price impact functions ¢(-) and h(-) are deterministic functions of the trading rate
e and do not depend on the market prices. Then the unique optimal risk neutral execution strategy for the
execution cost problem (3.4), when it exists, is static (state independent). Furthermore, for the linear price
impact functions (3.2) with constant impact matrices, symmetric permanent impact matriz G, and positive
definite combined impact matriz © defined in (3.7), the optimal risk neutral execution strategy {n}}h_, is
the naive strategy.

This result highlights the important role of the expected market price change in the optimal execution
strategy. Note that the results hold without specific assumption on the market price dynamics Fy(-). The
proof of Theorem 3.1 is provided in Appendix A.

In general, the expected market price change in each period is nonzero, likely due to institutional trades.
We will show that, in this case, the model assumptions and the expected market price change can significantly
affect the optimal execution strategy.

In §3.2 and §3.3, we focus on two specifications of the market price model (2.2) that include the jump
process J (k).

3.2 Additive Jump Diffusion Market Price Models

We now present a closed-form expression for the optimal risk neutral execution strategy with respect to the
additive jump diffusion model (2.6).

Theorem 3.2. Assume that the m X m symmetric matrices {Ak}ff:l, specified by the following recursive
equation:

Ap = App1 — (Apq1 — GT)A;Zil(AkH 0N, k=1,2,...,N-1, (3.10)



with Ay = ©1 + 0, are positive definite. Moreover, let m-vectors {by }o_, and scalars {cy }h_, be defined as
follows:

be = b1 + (07 — Apyn) ALY (begr — B% (k+1) + BY (k) — B% (k + 1) + 2E% (k) + rad, (3.11)
1 - ) a
ok = g1+ 5 (bepr — BE(k+ 1) + EY5 (k)" Arfy (ber — BS(k + 1) + B (k)

with by = E% (N) 4+ ra§ and cy = 0. Then the unique optimal risk neutral execution strategy n* = {ns i,
of Problem (3.4) under the additive jump model (2.6) is:

np = —Agy, (kg1 —E5(k+ 1)+ ES (k) + (07 — Appn) i y), k=1,2,...,N-1, (3.12)
N-1

ny=95- Z ny,
k=1

where xfy = S and xp =xf_y—n; fork=1,2,...,N —2. Furthermore, the optimal expected execution cost
equals:

1. _
Vi (Po,o) = FY'S = 58T (O7 — Ay = G)S = (Pa+ b1 — B (1) - rad)’ S — ey

A proof for Theorem 3.2 is given in Appendix B.

Theorem 3.2 indicates that the optimal risk neutral execution strategy under the additive model (2.6)
does not depend on the market price realization. In addition, volatility ¥* and covariance Cov’ (k) play
no role in determining the optimal risk neutral execution strategy (3.12). However, the expected permanent
price impact of other large trades, E% (k), affects the optimal execution strategy. This can be seen more
clearly from Proposition 3.1 below under an additional symmetry assumption.

Proposition 3.1. Let the permanent impact matriz G be symmetric and the combined impact matriz © be
positive definite. Moreover, assume for every k = 1,2,...,N, E% (k) = E% for some constant E%. Then
the unique optimal risk neutral execution strateqy is

(N +1-—2k)

S - a a
N 5 O~ ' (E% +71af), k=1,2,...,N. (3.13)

*
ng, =

Note that the symmetry assumption holds when permanent impact matrix is a diagonal matrix; this is
also assumed in the literature (e.g., see Almgren and Chriss (2000/2001)). We provide a proof for Proposition
3.1 in Appendix B.

In contrast to the naive strategy, the optimal execution strategy (3.13) now depends on the impact
matrices and varies over time as a linear function of ©~*(rad + E%). While the naive strategy never
buys for a sell execution, the optimal risk neutral execution strategy (3.13) may include buying in some
periods during liquidation. Note that the optimal solution (3.13) reduces to the naive strategy when the
total expected market price change ra§ + E% = 0. This result is consistent with Theorem 3.1. When
O~ Yrad + E%) < 0, the optimal risk neutral execution strategy is a strictly decreasing linear function of

k. Specifically the decision maker trades more than % shares in the periods 1,2,..., {%], while, in the
periods L%J y-«+y IV, he trades less than % shares per period. Similarly, when ©~!(rad + E%) > 0, the

optimal risk neutral execution strategy is a strictly increasing function of the time period k.

We further examine what parameters £% depends on. Let the jump sizes 72(k) and x% (k) be normally

distributed with means u3 (k) and pf(k), and standard deviations op(k) and o3 (k), respectively. Hence, for
the single asset execution, we have (e.g., see Theorem 9.1 in Karlin and Taylor (1981)):

E% (k) = tME (X?(k')) — 1A E (71'?(1{7)) =7 (/\yuZ‘(k’) — A3 (k) (3.14)
Covi (k) = 1A (Var(ﬂ?) + (E(ﬂ?))2) + TAy (Var(x?) + (E(X?))2)
= o ((0200) + (2 (0)) + 70y ((0300)" + (5 (k) ") - (3.15)
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Under the assumptions in Proposition 3.1, we observe that buy and sell arrival rates and the expected
permanent price impacts directly affect the expected market price change and consequently the optimal risk
neutral execution strategy. When A, = A, and p(k) = pg(k), EZ (k) = 0 while Cov¥ (k) is strictly positive
when either o2(k)A, is positive or 03 (k)X is positive. In this case, trades increase the volatility without

Y
causing a direction in the market price change.

3.3 Multiplicative Jump Diffusion Market Price Models

The simplicity of the additive jump diffusion model (2.5) leads to a static optimal risk neutral execution
strategy. However, from a practical perspective, the additive model (2.5) has limitations. For example, its
optimal strategy is static and therefore cannot adapt to the price information revealed during the course of
trading.

Theorem 3.3 presents the optimal risk neutral execution strategy from problem (3.4) when market price
dynamics and execution price model are given by the multiplicative jump diffusion model (2.8) and (3.1),
respectively. Subsequently we denote the m x m identity matrix with I. Moreover, we use A.x* B to denote
the componentwise (Hadamard) product of the matrices A and B.

Theorem 3.3. Assume that the sequence of deterministic symmetric matrices {Dk}ff:l, defined by

D, = —2GT ALG +

H+HT
% — (GT By + BIG) - 26, (3.16)

are positive definite, where the deterministic matriz By and the symmetric matrices Ay and Cy are derived
from

1
A1 = Apox Q1+ L1 Ap L1 + 3 (I — Le—1(245G + By)) D; ' (I — Li—1(24,G + B,
Bi_1 = Ly_1By — (I — Ly_1(By + 24, G)) D; ' (2C) + G By) , (3.17)
1
Cr-1=Ck + 3 (2Cx + BLG) DY (20, + GTBy) .

Here Ly,_y = Diag (e +rag' + ES (k- 1)), Qr_1 = rxm(xmT 4 Cov;(k—1), and Ay =0, By =1, and

Cy = —%. Then the unique optimal risk neutral evecution strateqy n™ = {n;;}év:l is given by

nj = Dk, (1 - (Bkﬂ1 n 2GTAk+1) Lk) Puoy — DL, (20k+1 n GTBk+1) whot, k=1,... N —1,(3.18)
B N-—-1
ny=.5— Z ny.
k=1

Furthermore, the optimal expected evecution cost becomes

Vi (Po,x0) = PSS — Pl Ay Py — P Byag — a3 Cho. (3.19)

The proof of Theorem 3.3 is given in Appendix C.

The optimal risk neutral execution strategy (3.18), derived under the multiplicative jump diffusion model
(2.8), is significantly different from the optimal execution strategy (3.12) under the additive jump diffusion
model (2.6). Firstly, the optimal risk neutral execution strategy (3.18) does depend on the covariance
matrices ¥™(X™)7 and Cov’}. In addition, strategy (3.18), obtained under the multiplicative model (2.8),
is stochastically dynamic and depends on the future market price realization P,_1, when raf* + E7 (k) # 0.
When raf* + E7 (k) is zero for every period k, Theorem 3.1, applied to the price dynamics (2.8), implies
that the solution (3.18) is static.

11



Assume that the jump amplitude is log-normally distributed, i.e., log 3" (k) and log x7* (k) have normal
distributions with means (k) and y*(k), and standard deviations o3 (k) and o7 (k), respectively. For a
single asset trading (m = 1), we have (e.g., see Karlin and Taylor (1975) page 268):

B (m () = exp (2 (k) + 1 (@2 (K)7),  Var (#2(8)) = (exp ((022(k)%) = 1) exp (262 (k) + (22 (k))?),
E (X;“(k)) = exp (/12“(/{7) + % (0';/“(147))2) , Var (X;n(k)) = (exp ((0';"(147))2) — 1) exp (Qp;/n(k') + (0’;“(]47))2)

Therefore,

Emm:TM(mequ+ggﬁﬁ)_Q-¢M<mp@gwﬂiﬂ%@ﬁ>_ﬁ,

VI (k) = A (Var (72 (k) + (B (7P (k) = 1)) + 7y (Var (3(8) + (B (3 (k) = 1)*)

In contrast to E7, now the volatility of the permanent price impact affects the expected market price change.
Notice that other distributions can also be considered for the jump amplitudes. For example, Pareto and
Beta distributions have been considered for jump amplitudes in a double exponential jump diffusion process
to model asset price evolution in the literature (e.g., see Kou (2002), Ramezani and Zeng (2007)).

4 Assessing and Controlling the Execution Risk

The optimal risk neutral execution strategy under the multiplicative jump diffusion model (2.8), given the
values of the two state variables P, and xj, depends only on the expected market return EY and the
covariance Cov’; (see Theorem 3.3). Thus, the optimal risk neutral execution strategy is identical to the
optimal strategy obtained under the following adjusted model without jump for the market price

Py = Py_1 + Diag(Pr—1) (T (af)n + T_lEf}‘) + 72 (Em + T_l/ZCovf}ll/Z) Zk) — Gny. (4.1)

While the market price in model (4.1) is normally distributed and has no jump, the market price P, of
models (2.8) and (4.1) share the same first and second moments. Hence, for the purpose of determining the
optimal risk neutral execution strategy, one does not need to differentiate between model (4.1) without jump
and model (2.8) with jumps.

However, in addition to the expected execution cost, one needs to be concerned about the execution risk
which can be assessed from the execution cost distribution. For risk management purposes, it is important
to quantitatively measure and manage the execution risk. The multiplicative jump model (2.8) and the
adjusted normal model (4.1) clearly leads to distinctively different execution cost distributions. We illustrate
the difference computationally in §5.

If one also wants to control execution risk when choosing an execution strategy, then the stochastic
programming problem (3.3) needs to be solved with an appropriate risk measure p(-) for the execution
cost. Under the jump model, the distribution of the execution cost is asymmetric and the variance is not
appropriate since it treats the cost and profit equally. Instead, CVaR or downside risk measure is more
appropriate. In addition, CVaR is a coherent risk measure which can measure extreme events/execution
costs and has attractive properties such as convexity, see, e.g., (Artzner et al., 1997; Rockafellar and Uryasev,

2000)).

Denote the execution cost by the random variable L e (POTS — Zi\;l ngﬁk) For a given confidence
level 2 € (0,1), CVaRg is given below

CVaRs(L) = min (a +(1-p)'E ((L - a)+)) , (4.2)

a€R
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where (2)T = max(z,0), see, e.g., (Rockafellar and Uryasev, 2000). With the CVaR risk measure, the

execution cost problem (3.3) becomes

N
. T T
nl’...mI]{,lgﬂlgm’aeRE(POS_Z:nkPk)+c'(a+(1—ﬂ) ( IS — Zn P, —a] ))
N
k=1

This is a multi-stage stochastic nonlinear programming problem. In particular, the execution cost depends
nonlinearly on ng due to the permanent price impact. Solving this problem is computationally challenging
and we are currently developing methods to approximate the solution accurately.

Similar to (Almgren and Chriss, 2000/2001), here we assume that the strategy {ni,---,nx} is static. We
use the following computational method to obtain the optimal static execution strategy under the CVaR risk
measure. Since there is no analytic expression for the CVaR evaluation, Monte Carlo simulation is required
to discretize a CVaR minimization problem. Unfortunately, under a discretization with M simulations, the
objective function in (4.3) includes the sum of M piecewise nonlinear functions:

1 M N 1 N +
TG T 7= 720
1, mIJ{flé%m,oce]RM] (POS_anPk(])) +c- a+m (PO S_anPk(J)_a)

N
s.t. an =5,
k=1

where the superscript (j) denotes the jth simulation.

The CVaR risk measure is typically continuously differentiable (Rockafellar and Uryasev, 2000). Since
nondifferentiability here arises from simulation discretization, we apply a smoothing technique in (Alexander
et al., 2006) for the single period CVaR optimization problem. The convergence property of this smoothing
method is established in (Xu and Zhang, 2009). We approximate the nonsmooth piecewise linear function
[2]* by a continuously differentiable piecewise quadratic function p.(z) for some small resolution parameter
€:

z if z>e€
pe(z) = %—F%Z—I—iG if —e<z<e¢ (4.3)
0 if 2z < —e€

In particular, the execution strategy which minimizes the CVaRs of the execution cost can be computed
from the following minimization problem:

M

N N
1 N . _
min a+ — .| PTS — nIpY) _ o s.t. ng=25. 4.4
Q€R,n g, ER™ (1— )M zj: (p ( 0 kz::l kg kz::l k (4.4)

5 Performance Comparison

We now present our computational investigation of the potential effect of the model assumption on the
optimal risk neutral execution strategy. We evaluate trading performance in terms of the expected execution
cost, execution risk, and more generally execution cost distribution.

Because of a more accurate characterization for the short term asset return, the multiplicative jump
diffusion model (2.8) with known model parameters is assumed for the future market price. Since trading
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impact of large institutions is likely to cause a nonzero change in the expected market price and return, we
assume that the expected change in the market price is nonzero. Based on the assumed model, we then
compare the following three strategies:

e Strategy,s: optimal risk neutral execution strategy under the assumed multiplicative jump model (2.8).

e Strategy 4: optimal risk neutral execution strategy under the additive jump diffusion model (2.6) with
comparable means and covariances set as below

2 =PEZ, 232 + Covy = P (rE™(Z™)T + Cov®).

We denote the total volatility (rx™(Xm)T + Covf}l)l/2 by o0iot. Note that Strategy , does not depend
on the covariance Cov? and volatility 2.

e Strategy,: the naive strategy which is optimal when the expected total market price change is zero,
the permanent impact matrix GG is symmetric, and the combined impact matrix © is positive definite.
The naive strategy is used as the performance benchmark; the comparison illustrates the importance
of accurate modeling of the market price dynamics in determining an optimal execution strategy.

We conduct computational investigations for a single asset trading example. The expected market price
change due to small trades is assumed to be zero, i.e., a§ = 0 ($/share)/day and of* = 0 (1/day). We also
assume that variance 7™ (X™)7 (due to normal trading) constitutes 10% of the total standard deviation
Tiot. Specifically, we consider selling S shares over 7' days. Unless otherwise stated, the parameter values in
Table 1 are used.

‘ Parameters ‘ Values ‘
Number of Periods N=T
Interval Length r=T/N =1 day
Temporary Impact Matrix | H = 2.5 x (107%) ($ - day)/share®
Permanent Tmpact Matrix G =2.5x% (10"7) $/share?
Initial Asset Price Py =50 $/share

Table 1: Parameter values for the single asset execution example.

In addition parameters A, and A, are trading arrival rates per day. We assume that the jump amplitudes
a

7 and x* are log-normally distributed, and E% (k) = E% and EZ (k) = E7 for some constants ES and
7, Cov; (k) = Covy and Cov% (k) = Cov? for some constants Cov’; and Cov?.

Furthermore, the market price dynamics is determined by the following parameters X™, i, o, o, o3,
Az, Ay. In subsequent computational results, we have simply assigned reasonable parameter values for illus-
trative purposes; we also choose these parameter values so that the magnitudes of trading impact represented
by E (71';“(147)) —land E (X;“(k)) — 1 are reasonable. In addition, since in general the permanent price impact
of buying is larger than selling, we choose larger values for means of jump amplitude for buys than for sells,

e, f > i,

5.1 Comparison of the Execution Risk

We assess the difference in execution risk under the multiplicative jump diffusion model (2.8), denoted as
Modelys, and the adjusted model (4.1) without jump, denoted as Model 4.
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The market price model (4.1) leads to a normal distribution for the market price Py which can un-
derestimate the tail risk (likely due to large trades of other institutions). However, the multiplicative jump
model (2.8), in which permanent price impact of other institutional trades are modeled by compound Poisson
processes, is capable of better characterizing the short term asset returns and describing the fat tails.

In subplot (a) of Figure 1, the probability density function of the market price Py and the execution
cost under the models (2.8) and (4.1) are compared. Subplot (b) compares the execution cost distribution
associated with Strategy,, and Strategy 4. Under the proposed jump model (2.8), compared with the normal
model (4.1), the execution cost has larger probability of small costs and higher probability of extreme costs.
Using the model (4.1), it is possible to significantly underestimate the execution risk.

055 Model, —.—. 0551 Model, —.—.
o5} Model,, o5} Model,,
045} 045}
2 o4} 2 o4}
2 2
G 035} G 035}
o o
2 o3t 2 o3t
S 025} S 025}
Ko} Ko}
2 o2} ° o2}
a a
0as} 0as}
o1} o1}
005} 005}
b———", . ., S O—4/——=*=" . , . ., , re——
7 6 5 43210123 4506 7 8 7 6 5 43210123 4506 7 8
(a) Standardized Market Price Distribution (with (b) Standardized Execution Cost Distribution
zero mean and unit variance) (with zero mean and unit variance)

Figure 1: Probability density functions of Modely; and Model4 for M = 50,000 simulations. The kurtosis
of Py for Modelys is 7.03 while for Model, is 3.03. The kurtosis of the total execution cost per share
for Modelys is 7.50 while for Models is 3.04. Initial holding is S = 10° shares. 'The parameters are
Ae = 1, g™ = 9.901 x 1073, (¢™)? = 9.802 x 107° Ay = 0.2, py = 1.049 x 1072, (0';/“)2 = 2.873 x 1073,

These values yield ¥™ = 9.045 x 1072, EI} = —0.0076, and Cov} = 8.182 x 10~*.

Figure 2 compares the risk measured in standard deviation and VaR for the execution strategies Strategy z;,
Strategy 4, and Strategy nr, under the assumed multiplicative jump diffusion model (2.8). Figure 2 illustrates
that the risk values are quite different between the naive strategy and Strategy,; or Strategy ,. We note that
at E'7 = 0 the risk measure values are identical since the three execution strategies Strategyy, Strategy,,
and Strategy 4 coincide at this point.

Figures 2 also illustrates that including an appropriate risk measure in Problem (3.3) can be important
in determining the optimal execution strategy. Under the proposed jump model, the coherent risk measure
CVaR may be more appropriate.

Assume that a strategy {ng} is deterministic, we compute the minimum CVaRgsy strategies under
Modelys and Models. Table 2 illustrates the difference between the optimal static (price-independent)
execution strategies to minimize the CVaRgs5g of the execution cost computed under the two models Model s
and Model 4. Table 2 also indicates that, although Modely; and Model 4 share the same optimal risk neutral
execution strategy, they yield different optimal execution strategies when CVaRgsy of the execution cost is
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Figure 2: Risk measures of the execution costs for Strategy,,, Strategy , and Strategyy for M = 40,000
simulations. Initial holding is S = 10® shares. Time horizon is T' = 5. The parameter values are \, = 2,
PR =9.9013 x 1073, o™ = 9.9007 x 1073, and A, € [0.05,3.6]. These values yield ¥™ = 9.6484 x 1073,

Ttor = 0.032, and Cov’} = 9.3091 x 10—,

minimized. Here the difference in CVaR values is about 3.7%. While the strategy to minimize the variance
liquidate completely immediately, the strategies for minimizing CVaRg5¢ under both models sell in the
first couple of periods aggressively and purchases are made in the last couple of periods. Although here
minimizing CVaRgs5y strategies share a similar pattern under both Modely; and Model 4, there is significant
difference in the amount of trading in these two strategies.

5.2 Comparison of Optimal Execution Strategies

When the expected total market price change is nonzero, Strategy,, is dynamic while the optimal Strategy ,
is static. However, since the initial price Py and the initial holding zo are known, the optimal execution n}
for both Strategy,, and Strategy , are deterministic. Figure 3 compares Strategy,, and Strategy , for the
first period as a function of E7. As is illustrated in Figure 3, the difference in Strategy,, and Strategy 4
increases as E7 moves away from zero.

Given a fixed E7, Figure 4 illustrates the optimal execution strategies Strategy,, and Strategy, from
period 2 to period 5 for M = 1000 simulations of the jump amplitudes and pricing shocks Z;. These
plots clearly illustrate the significant difference of these execution strategies. While the naive strategy
Strategy 5 suggests to trade an equal amount in each period, Strategy 4 is time varying but independent of
the market price realized at the beginning of each period. In contrast, Strategy,, is stochastic and varies
with the realized market prices. In comparison to the naive strategy, both execution strategies Strategy,,
and Strategy , suggest to sell more aggressively initially in order to take advantage of the expected impact
of large trades E7 < 0.

According to Theorems 3.2 and 3.3, another main difference between Strategy ;, and Strategy 4 is that the

execution strategy Strategy,, depends on the covariance of the market return, while the execution strategy
Strategy 4 does not depend on the covariance of market prices. We illustrate the implication of this property
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Model s Model 4
CVaRgsy 2.50 x 106 2.59 x 10°
ny 9.83 x 10° 9.61 x 10°
Na 1.91 x 10* 1.12 x 10°
ns 7.11 % 10® | —5.87 x 10*
n —1.13 x 10% | —4.55 x 103
ns —8.59 x 10% | —9.04 x 103

Table 2: Optimal strategies which minimize CVaRgsg under Modelys and Modely, and the corresponding
Parameters are as in Table 1,

optimal values using M = 50,000 simulation in executing a single asset.
and T = 5 days, and S = 10° shares. The parameter values are A\, = 3, p™ = 9.5 x 1073, o
Ay = 0.5, it = 6.9 x 1073, and oyt = 3.2 X 10=2. These values yield ©™

Cov® = 1.106555 x 1072
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Figure 3: Comparison of the optimal execution nj under the multiplicative jump model and under the
additive jump model. Initial holding is S = 107 shares. The total volatility is oor = 0.03.
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Figure 4: Optimal strategies n3, n3, nj and nj under the multiplicative jump model and the additive jump
model for M = 1000 simulations. The trading horizon is 7' = 5 days. Initial holding is S = 107 shares. The

parameter values are A\, = 3.8, u™ = 9.901 x 1073, &

xr

m

=9.901 x 1072, A, = 0.2, u™ = 1.186 x 1072, and

oyt = 1198 x 10~2. These values yield ¥™ = 9.045 x 1073, E® = —3.560 x 10~2, and Covy =8.182 x 104
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Crot ' o ym Strategy,, | Strategyy | Strategy, | D*™ (%)
0.020 || 5.90 x 1072 | 1.25 x 10~2 | 6.03 x 1073 21.40 292.29 22.73 86.26
0.025 || 540 x 1072 | 3.41 x 102 | 7.54 x 1073 21.19 293.08 22.66 89.10
0.030 || 4.78 x 1072 | 4.90 x 10~2 | 9.05 x 1073 21.04 293.90 22.60 92.48
0.035 || 4.06 x 1072 | 6.21 x 10~2 | 10.55 x 10~3 20.97 293.31 22.65 95.77
0.040 || 3.22x 1072 | 7.44 x 102 | 12.06 x 10~3 20.58 293.43 22.62 100.41
0.045 || 2.27x 1072 | 8.62x 1072 | 13.57 x 1073 20.32 292.01 22.59 104.61
0.050 || 1.21 x 1072 | 9.77x 1072 | 15.08 x 1073 20.13 292.78 22.59 108.71

Table 3: Average expected cost (cents per share) and D*™ (percentage) for M = 100,000 simulations.
Trading horizon is T' = 10 days. Initial holding is S = 10° shares. Jump parameters are set \, = 2.6,
Ay = 0.2, 13 = 4.938 x 1073 and o™ = 9.950 x 10~3. Thus, E% = —1.180 x 1072

next.

5.3 Comparison of Expected Execution Costs

We now compare expected execution costs associated with Strategy y;, Strategy,,, and Strategy 4, presented
in cents per share. We quantify the average execution cost difference per period for a single asset trading
using the following measure,

N M
am def 1 m) - p(m), - a) 5(a), -
D SN ™ () B () — B (5.1)

=

(m)

where the number M is the total number of simulations, n; () is the optimal risk neutral execution under

(a)

the multiplicative jump diffusion model for the kth period in the ¢th simulation, n,
for the kth period derived under the additive jump diffusion model. The prices ﬁk(m)(z) and ]Bk(a)(z) are the
execution prices at period k in the ith simulation, corresponding to the execution strategies n(™) (¢) and n(@
respectively. The market price is assumed to follow a multiplicative jump diffusion model.

is the optimal execution

Using simulation, we compute D*™ measure for 7' = 10 days and various values of o¢,:. These quantities
are reported in Table 3 which also includes the averaged execution costs of the three execution strategies
Strategy s, Strategy ,, and Strategy,. As Table 3 indicates, the average relative difference D*™ (%) can
be quite significant. Moreover, the value of D*®(%) increases as oy, increases. Notice that, as Strategy 4
and Strategyy do not depend on the asset price volatility, their corresponding expected execution costs
are constant as o, changes; the slight variations for Strategy, and Strategy, are due to Monte Carlo
simulations.

Proposition D.1 provides an analytical formula for the expected execution cost of the optimal strategy
obtained under the additive jump diffusion model. For Strategy,, which is optimal under the multiplicative
jump diffusion model, the expected execution cost of Strategy,, decreases as oo increases. This is due to
the fact that, under the multiplicative model, the optimal solution is truly stochastically dynamic; thus it is
capable of capturing price variations. In contrast, Strategy 4 is static and its execution cost do not depend
Onl O¢pt.

Subplot (a) in Figure 5 depicts the dependence of the expected execution cost on the trading horizon
T. As Figure b demonstrates, when the time horizon increases, the expected execution cost of the execution
strategy Strategy, becomes much higher than the expected execution cost of Strategy,,. Subplot (b) in
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Figure 5 illustrates how the expected execution cost associated with each of these three execution strategies
varies as E'7 changes, focusing when E7? < 0 . This figure clearly illustrates that in the depicted range, as
E; deviates from zero, the expected execution cost of the naive strategy, Strategy y, becomes significantly
higher than the expected execution costs of the strategies Strategy,, and Strategy,. Moreover, as it is
expected, the expected execution cost corresponding to the execution strategy Strategy , is also greater than
that of the optimal strategy Strategy,,. This difference becomes more prominent as E77 moves away from
zero.
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(a) Execution cost as time horizon varies (b) Execution cost as E7} varies

Figure 5: Comparison in the expected execution cost (cents per share). The expected costs in the plot
were computed using Theorem 3.3 for Strategy,, and Proposition D.1 for Strategy,. Initial holding is
S = 107 shares. The values specified for the model parameters yield ¥™ = 9.045 x 10~3. For Subplot
(a), Ay = 3.8, = 9.901 x 1073, o™ = 9.901 x 1073, )\, = 0.2, = 1.186 x 10_2,0';/n = 1.198 x 1072,

ET = —3.560 x 1072, Cov’} = 8.182 x 10~*

6 Concluding Remarks

Current literature on the execution cost problem typically assumes that the market return (or price change)
has a normal distribution. There are two main problems with this assumption. Firstly, the empirical
study indicates that the short term return distribution often has fat tail, possibly due to permanent price
impact of institutional trades. Such fat tails cannot be described by normal distributions. Secondly, while
the permanent price impact of a decision maker’s own trade causes a discrete price depression, it is not
reasonable to model permanent price impact of other concurrent large trades by a continuous Brownian
motion.

In this paper, we suggest using jump processes to capture uncertain permanent price impact of trades
by other institutions. The proposed model includes two compound Poisson processes corresponding to buy
and sell trades, respectively. Using stochastic dynamic programming, we provide an analytical solution to
the risk neutral execution strategy which minimizes the expected execution cost under the proposed jump
diffusion models for the evolution of market prices. This solution is static (state independent) when the
expected market price change is zero. However, when the expected market price change is nonzero, the
optimal execution strategy derived under the multiplicative jump diffusion model is stochastic and dynamic.
In addition the optimal execution strategy depends on the asset return volatility. In contrast, under an
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additive jump diffusion model, the optimal execution strategy does not depend on the asset price realization
or the volatility, even when the expected market price change is nonzero.

Under the proposed jump diffusion model, more accurate assessment of the execution risk can be made.
When the market price change is modeled by normal distributions, the tail execution risk can be significantly
underestimated. Using simulations, we illustrate that the execution cost distribution associated with the
naive strategy, optimal risk neutral strategy under the additive jump diffusion model, and the optimal risk
neutral strategy under the multiplicative jump diffusion model are qualitatively different. This highlights
the importance of using an appropriate model to determine an optimal execution strategy. In addition,
we assess differences in the optimal execution strategies derived under different model assumptions. We
illustrate that, when the expected market return deviates from zero, the naive strategy can perform poorly.
Assuming that the market price dynamics is characterized by a multiplicative jump diffusion model, we
show that the execution strategy optimal under an additive jump diffusion model (with comparable mean
and standard deviation) can perform notably sub-optimally when the asset return volatility or the trading
horizon increases.

Our main focus is on investigating model assumptions and the resulting optimal execution strategies
for the execution cost problem. We consider the optimal execution strategy for minimizing the expected
execution cost. In addition, we compute the minimum CVaR risk execution strategies assuming that the
strategy is deterministic and leave extending the results to more general cases for future work. There are
many possible objective functions which are of interest to institutional investors. In particular, a natural
additional criterion to include is some measure of risk, e.g., variance, VaR or CVaR, of the execution cost.
While the inclusion of a risk measure into the objective function is conceptually straightforward and probably
desirable, an analytical expression for the optimal execution strategy is not available except in very special
cases (Bertsimas and Lo (1998)). Including risk measures in the objective function might make the optimal-
value function non-separable in the sense of stochastic dynamic programming (e.g., see Yao et al. (2003)).
Therefore, the presence of some nonlinear risk measure makes solving the stochastic dynamic programming
very challenging.

In this paper, we do not address how to estimate the parameters of the proposed jump diffusion model.
It will be interesting to investigate techniques to estimate the parameters using high frequency trading data
and techniques such as maximum likelihood estimation. Empirical performance assessment of specifications
of the proposed model using real world data suggests another future research direction. In addition, we have
assumed here that impact matrices are constant and independent of the arrivals of other trades in previous
periods. It might be interesting to appropriately model the effect of trading from other institutions on the
impact matrices and to investigate its implications on the optimal execution strategy. Investigating the
stability of the jump diffusion model comparing to a diffusion model is another direction for future work.
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A Optimal Execution Strategy with Zero Expected Price Change

In this appendix, we present the proof of Theorem 3.1.

Proof. We first prove by induction on & that, when E (Fi_1 (Py—1) |Ps—1) = Pi—1 holds and (deterministic)
price impact functions are independent of the market prices, optimal execution n} does not depend on Fj_q,
and for k = 1,2,..., N, the optimal-value function is given by

Vi (Peov,a5-1) = P3 S — af_Ps_1 + Rx_1(x1_1), (A.1)
where Rj_1(-) is a deterministic function independent of Py _;.

For k = N, optimal execution n% equals xx_q and from equation (3.5) the optimal-value function in
the last period becomes

N - TN_
VN(PN—17$N—1) :POTS—l‘%_le—l‘Fl’%_lh( J\; 1)-

This confirms the correctness of (A.1) for k = N with Ry_q(zn_1) = 2% _,h (xNT_l). Assume that in the
period (k 4 1), optimal execution ny ., only depends on zj and the optimal-value function at time period

k4 1is
Vk*+1(P/€7 l‘k) = POTS — l‘gpk + Rk(l‘k),
where Ry (zj) does not depend on Py. The Bellman’s principle of optimality in the kth step yields:

Vi (Peo1,2p-1) = Héiﬂélm E [—nfﬁk + Vi i (Pryar) | Pec1, r—1
Nk

. n =
= Hél]lIglm E [—ng (Pk—l —h (Tk)) + POTS — l‘gpk + Rk(l‘k) | Py, $k—1} .
Nk

Applying the market price dynamics (2.2), equation (2.1) and assumption (3.9), the optimal-value function
V¥ (Py—1, zx—1) becomes

nkmeil}élm E [—nf (Pk—l —h (njk)) + Py S — (whor —np)” (fk—l(Pk—l) — 719 (njk)) + Ri(zr—1 —ng) | Pk—17$k—1]
= niﬂeil}élm (—ng (Pk—l —h (nT—k)) + PS5 - (r—1 — nk)T (Pk—l — 79 (nT—k)) + Ri(xr—1 — nk))
= POTS' — xf_lPk_l + nkmeilgm (ngh (n%) + (zr—1 — nk)TTg (nT—k) + Ri(xr—1 — nk)) . (A.2)

The objective function of the minimization problem in (A.2) does not depend on Py;_; and is only in terms

of x;_1 and specifications of the price impact functions h(-) and g¢(-). Hence, optimal execution n} does
not depend on Pj;_; and consequently is static. Moreover, the optimal objective value of the minimization
problem in (A.2) becomes

Vi (Pro1,ap_1) = P{S — ] Po_q 4 Re_1(x_1),
where

Ri_1(xr_1) = nilgélm (nZh (njk) + (21 —ng) ' rg (nTk) + Ry(rp—1 — nk)) .

This proves the correctness of equation (A.1) for k. Thus, for k = 1,2,..., N, the optimal-value function is
as in equation (A.1l), and the optimal execution n} is independent of P;_; and consequently is static.

Now, let the price impact functions be given by (3.2) where the permanent impact matrix G is symmetric
and the matrix © is positive definite. By induction on &, we prove that for k = 1,2,..., NV,

. 1 . . 1 0
n, = mxk_l, Vk (Pk—l, l‘k_l) = POTS — PkT_ll‘k_l + El‘g_l <_7 + G> Th—1- (A?))
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(From (3.6), the optimal execution n}; equals zx_1, and the optimal-value function Vi (Py—_1,2n-1) be-
comes

* T T 1, H+4H" Ta T L p
Vi (Pvo1,an—1) = Py S —an_1Pvo1 + gEN-1T T EN-1 = PiS —an_1Pnv-1+ 573N—1(® +G)an-a.

This confirms the correctness of (A.3) for k = N. Now assume (A.3) is true for k£ 4 1. Therefore,
* TG T L 7 ©

Using this assumption, we show that (A.3) is true for k. The Bellman’s principle of optimality in the kth
step becomes:

V;(Pk_l,xk_l) = mn E [—nfﬁk —|—Vk*+1(Pk,xk) | Pr_1, .’Ek_1:|

ny €RM

. H ~ 1
= min E —nZPk_l + ng—nk + POTS — Pkak + —xg L +G)zr ) | Peo1, Tk
ny ERm T 2 N —k

. H - 1
= min <—n£Pk_1 + ng?nk +PIS—E [ngﬂpk_l,xk_l] + §(xk_1 - nk)TA(xk_l - nk)> ,

ny €RM

where A = % + (. Applying the market price dynamics (2.2) and equation (2.1), the expected value in
the above statement can be stated in terms of P,_1 and zp_1:

E [Py Poct,zp-1] = E[(Fe1(Peo1) — Gng) ' (2n—1 — ng) | Poo1y 2p-1] = (Pe—1 — Gng) T (z5-1 — ng),

where the last equality comes from the assumption E [Fy_1(Pix—1) | Pi—1, x—1] = Px—1. Hence, after some
algebraic manipulation, the optimal-value function V;*(Px_1, #5_-1) equals

. 1 (1 (N—k+1 G 4
PYS— Pl o+ 59@5_114%_1 +n£%1]11&1m (Eng <ﬁ®> ng — <N — kxk_1> nk) .

When the matrix © + @7 = 20 is positive definite, the unique optimal solution of the above minimization
problem becomes

1

. (A4)

*
ng, =

Therefore, the optimal value function V,*(Px_1, £x—1) equals

G)

* o 1
Vk (Pk—laxk—l) = POTS — PkT_ll‘k_l + §l‘g_1 <m

+ G> Trp_1.

This completes the induction. Using equation (2.1) and ¢ = S, it can be shown that n} obtained in (A.4)

equals %, which is the naive strategy.

O
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B Optimal Execution Strategy Under Additive Jump Market Price Models

Below, we provide a proof for Theorem 3.2.

Proof. We prove by induction on k that the optimal execution and the optimal-value function are given by:
Vit (P, 5 ) = PLS — %xf_l (@T — Ap - G) Tho1 — (Prcy + bx — By (k) — ra8) a5y — cx,  (B.1)
ni_y = A7 (bk B (k) + ES(k—1)+ 07 - Agxk_2) . k=123,...,N,

where A, by and ¢ are defined as in equations (3.10) and (3.11), and the matrix Ay is symmetric.

For k = N, optimal execution n¥ equals y_1. From equation (3.6), the optimal-value function in the
last period becomes

. ~ 1 H+HT
VA(Pyot,ano) = PIS = PR _ono + Soky +

IN—1, (B?)

Hence, equation (B.1) holds for k = N with Ay = ©7 +©, by = E%(N) + 7ad, and ey = 0. Notice that
the matrix Ay is symmetric. Assume that the statement (B.1) holds for £ + 1, particularly:

* cr 1 a a
Vk+1(Pk7$k) = POTS — 5.’65 (@T — Ak+1 — G) T — (Pk + bk+1 — Ej(k + 1) — TOzO)T T — Ck41, (B3)

where Apyq is symmetric. We will prove the correctness of (B.1) for k. Applying Bellman’s principle of
optimality in the kth step yields

Vi(Picivem1) = min B {—ngﬁk+vk*+1(Pk,xk) | Pay, et - (B.4)
Nk

Substituting (B.3) into equation (B.4), the objective function in (B.4) becomes

D, I 1 a a
E [—nng + POTS — §$g(@T — Ak+1 — G)xk — (Pk + bk+1 — Ej(k + 1) — Ton)Txk — Ck+1 | Pk_l, Th—1

— 1 a a 1
= POTS — 5.’65_1 (@T — Ak+1 — G).’Ek_l — (Pk_l + bk+1 — Ej(k + 1) + Ej(k))T Tr—1 + §ngz4k+1 ngk

a a T T T
+ (bk+1 —EZk+ 1)+ ES5(k)+ (07 — Apy1) xk—l) N — Chil.

Note that this function to be minimized is quadratic in ng. Moreover, from the induction hypothesis the
matrix Agy1 is symmetric. In addition, the matrix Ay 41 is positive definite by assumption, and consequently
the objective function is convex. It is straightforward to verify that the optimal solution is attained at

np = —Agyy (bepr — BS(k + 1) + BS (k) + (07 = Aggq) ape1)

Whence the optimal-value function V' (Ps_1, 2x—1) equals

|
Pl'S — Exg_l (O = Apg) A L (07 — Apy)T + 07 — Appy — G) s (B.5)
— a a a a T
— (Poo1 4 (07 = App) A}y (bugr = B (k + 1) + B35 (k) + byr — B (k+ 1) + BS (k) 241
1 a a T . a a
=5 (brpr =BG (k+ 1) + B (k)" AL (bar — B (k+ 1) + EZ (k) — chpa.

Substituting equations (3.10) and (3.11) in (B.5) yields the correctness of equation (B.1) for k. Furthermore,
equation (3.10) and the symmetry assumption of Aj41 yield the matrix Ay is symmetric. This completes
the induction. (|

We now prove the statement in Proposition 3.1.
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T and E% (k) = E¥ for k = 1,2,..., N,

Proof. By a simple induction we can prove that, when ¢ = &

equations (3.10) and (3.11) yield
N+2—k N—-—Fk+2
A= | —— by = —— (E? o). B.
’ <N—|—1—k> O ;— (BY 4 rad) (B.6)
., N. Hence,

Positive definiteness of © implies that the matrix Ay is positive definite, for every k& = 1,2
the assumption in Theorem 3.2 is satisfied and stochastic dynamic programming offers a unique optimal

solution. Substituting equations (B.6) in (3.12), we get
* 1 * (N — k) - a a
U S Ll O ' (EY +70f), k=1,2,...,N—1, (B.7)
or equivalently
N-Fk+1
v, =(N—k+2) <n;;_1 + %@—1 (E% + mg)> . k=2,3,....N. (B.8)

Applying equation (B.7), equation (B.8) and equation (2.1), we get

* 1 * * N—k _ a a
"k :m(xk—2 Nk 1)—(27)(9 "(EY +71af)
1 * N—-k+1 _ a a . N —k 3 . .
TN—k+1 <(N_k+2) <nk—1+(27)® 1(EJ+7a0)> _nk—1> —%@ "(E% + raf)

=nj_; + O (EY + raf),
Now, we use equations (B.7) and (B.9) to prove (3.13) by induction on & < N — 1. Equation (B.7) for k =1
directly implies the correctness of (3.13) for & = 1. Assuming that equation (3.13) holds for & — 1, we will

prove it for k. Using equation (B.9), we have
. S (N+3-2k) 4, s 1 ea s S O N+1—-2k .. s
nk:——g(al(Ej—l—Tao)—l—@1<EJ+TQO):——7®1<E‘7—|—TQO),
N 2 N 2
N — 1, and the induction is complete.

which proves the correctness of equation (3.13) for k = 2,3

Since ij LN = S, for k = N we must have

5, 1 N-1
=5 1)N+§®_ S4rad) Y (N+1-2k)=
k=1

N -1
+ ot (B 4 raf),

2|0)\

O

w*

-3

which shows the correctness of (3.13) for k£ =
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C Optimal Execution Strategy Under Multiplicative Jump Price Models

In this Appendix, we prove Theorem 3.3. Recall that E'} (k) and Cov'; (k) denote the expected value and
covariance matrix of J™ (k). Moreover, we refer to the m x m identity matrix, and the m x m zero matrix
as I and 0, respectively. Moreover, we denote the m-vector of all ones with e.

Proof. By backward induction on k, we prove that optimal execution is given by (3.18), matrices Ay and Cj
are symmetric, and the optimal-value function is given by equation (3.19).

For k = N, the constraint x = 0 yields the optimal execution n3 must equal zy_;. Using equation
(3.6), the optimal-value function in the last period becomes

y _ 1 H+ HT
Vi (Py_1,en-1) = P3 S — P&_jen_1+ 51’%—1fo—1’ (C.1)
which is obtained from substitution Ay = 0, By = I and Uy = —H‘;fT in equation (3.19). Note that

matrices Ay and C'y are symmetric.
Assume that statement (3.19) holds for k + 1, i.e., the optimal-value function V| | (P, zx) is given by
Vk*+1(P/€7 l‘k) = POTS — PkTA;H_lPk — PkTB;H_ll‘k — l‘gck+1l‘k, (CQ)

with Agy1 and Ciyq are symmetric. We now prove the correctness of equation (3.19) for k. Bellman’s
principle of optimality implies

Vk*(Pk_l,l‘k_l) = HélﬂIglm E —ngﬁk + Vk*_l_l(Pk,l‘k) | Py, $k—1} . (C?))
Nk

Substituting equation (C.2) into equation (C.3), we obtain:

V;:(Pk_l,l‘k_l) = Hél]]Igl E {POTS - ngﬁk - PkTA;H_lPk - PkTB;H_ll‘k - l‘gck+1l‘k | Pk—la $k—1} . (04)
Nk m

Given Pj,_q and xj_1, equation x; = xp_1 — ny and the execution price model (2.8), the terms ngﬁk and
ngk+1xk in the objective function of the minimization problem in (C.4) are deterministic. Hence:

- - H H
E [nng | Pk—la $k—1} = nng = ng <Pk_1 - ?nk> = nng_l - ng?nk, (05)
E [l‘gck+1l‘k | Poc1, wpo1] = (wp-1 — ni) T Cryr(xr_1 — np). (C.6)
Define £;, = e + raf + J™(k) + 7'/22™ 7, Using market price dynamics (2.8), we get:

E [PIBiyizs | Pocty ro1] = Py Le By (vi—1 — ng) — n GT Begr(2p—1 — ng), (C.7)

where Ly = Diag (E(Ly)). Similarly, using the market price dynamics (2.8), the term P Aj4q Py is stated
as:

Pr A1 Py = P Diag (L)) Apy1Diag (Lx) Pe_1 — 2P Diag (L1) Axp1Gng + nk GT Ap1Gng. (C.8)
In addition

E [Pl Diag(Ly) Axt1Diag (Lx) Pyo1 | Poo1y wh—1] = Py (Appr# E[LoLE | Poc1, 2i-1]) Pen,
where .x denotes the Hadamard product.

Since E(Z;) = 0 and the random vectors 7, and J™(k) are independent, we obtain

E [chg] = E[LAE[Lx])T + 72™(2™)T 4+ Cov2 (k).
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Hence,

E [PkT_lDiag ([,k) Ak+1Diag ([,k) Pk—l | Pk—la l‘k_l] (Cg)
= Pl (LeAgpr L + (722(E™)T + Cov2(k)) . Ags1) Pror.

Taking expectation from (C.8) and substituting equation (C.9), the term E [PgAk+1Pk | Pe_1, l‘k_l] equals
PkT_l (Ak+1 S (TEm(Em)T =+ COVI;(k)) =+ LkAk-H Lk) Pr_1 — 2PkT_1 LkAk-H Gny + ngGTAk_H Gnyg. (CIO)

Substituting equations (C.5), (C.6), (C.7) and (C.10) into equation (C.4), the objective function of the
minimization problem in (C.4) is reduced to:

PSS — ol Coyrzi—1 — P Ly Begprzi—1 — Py (Apgr. + (72™(2™)T + Cov'(k)) + Ly Axt1Ly) Piy

1
+ (2f_1 (2Ck41 + BL 1 G) + Py (=1 + Ly Bry1 + 2Li A1 G)) nie + §nng+1nk, (C.11)

where Dy 11 is as in equation (3.16). Hence, the minimization problem in (C.4) is quadratic in nj. Since
Dy 41 is assumed to be positive definite, the unique optimal solution is attained at

— T
np= —Dily (wi_y 20k + B G) + Py (=1 + LiBrga 4+ 2Lk Ag 1 G)) (C.12)

Substituting n into (C.11) and after some algebraic manipulation, the optimal-value function V¥ (Py_1, 2x—1)
becomes

Vi (Ps_1,25_1) = P{S — PT Ay Py — PL Byry_q — 2} Crag_y,

where the matrices Ay, By and Cj are given by equations (3.17). Notice that when Agy; and Cj4q are
symmetric, equations (3.17) indicate that A; and Cj are also symmetric. This completes the induction. [
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D  Analytical Formulae for Expected Execution Costs

Assuming that the true model for the market price is the multiplicative model (2.8), closed-form expressions
for the expected execution costs of the naive strategy and the execution strategy (3.13) can be easily derived.
The following proposition presents these formulae.

Proposition D.1. Let the true model for the market price be the multiplicative model (2.8), and for every
k, EZ (k) = EZ, for some constant E. Assume that the permanent impact matriz is symmetric and the
matriz © is positive definite. Then the expected (true) execution cost of the execution strategy n*, optimal
under the additive jump diffusion model, given in equation (3.13), equals

N = N

TG 5T | &T r H . &7 w1 [ N—k
E POS—;Pknk =S5"P+S mS-i—Wk:lL <TGS—PO> (D.1)
N-1

a aT -1 (RN —k) 7k k1Yo, (N—2k—1) 4

+;(Ej+mo)@ <72N (L G-GL )S+72 L* Py

a a\T ~—1 N(N2_1) lN_l 2 kE—1 —1 a a
+(E% 4 1ad)" © TH+EZ(N—k)(N —1—=2k(k4+ N)) LF7'G )| 07 (E% 4 1ad),

k=1

where [ & Diag (e + rag' + Er}’) Here the superscript k in the term LF is the exponent of L.

Proof. Let the market price evolves according to the multiplicative jump diffusion model in (2.8). Whence,

following the optimal execution strategy n™ given in equation (3.13), the total amount received at the end
of the time horizon equals

N N T N 5
STk H ., ¥ S N+1-2k)  _ a a
ZPank = Z <Pk—1 - —nk> ny = ZPkT_l <N _ WAL= 2%) 5 )@ “rad +EJ)>
k=1 k=1 T k=1
N & T _
S N+1-2k) _ a a H /S N+1-2k)  _ a a

After simplifying the expression in the right-hand-side of the above equation and using the equalities
Zi\;l(]\f +1—2k)? = w and Zi\;l(]\f +1—2k) =0, we arrive at

N N a7 N
ST S N+1-2k a a _
g ank = E kaq - E Q( 7 +Ta0)T® Py

2
k=1 k=1 k=1
ar H g NWN’-1) _, T o-179-! (E2 a
—STmS—%(EJ-FTO{O)T@ 1H® 1( J+TO{0).

Therefore, the expected value of the execution cost becomes

N = N N
- I - ST . AT N4+1-2k
E|PfS-> Plni|= P'S- ~ 2 ElPe]+ (B + raf)’ 07 %E[Pk_l] (D.2)
k=1 k=1 k=1
T H N(N2 _ 1) a a\T ~—1 —1 a a
+5 _NTS+712T (E% +71a0)” ©7 HO™ (ES + 7ag) .

Since the random variables 7, and J™(k) are independent of Pj_1, using the conditional expectation
theorem (e.g., see Varadhan (2001)), we get

E[P:] = E[E[P:|Pe_1]] = E [Diag(Pk_l) (e a4+ 7P, j’“(k))] — Gnp = LE[Pyi_y] — Gnf, (D.3)

where L = Diag(e + Taf* + E7). Therefore,

N N N-2 N-1
S E[Pia]=Po+» (LE[Pis]—Gni_i)=Po+LPy+ Y LE[P]— ) Gni.
k=1 k=2 k=1 k=1
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Using equation (D.3), the summation Zi\f:—f E[P;] can be further simplified and we get
N-1N-k
ZE Pi_1] (ZL’“ 1) Po— Y > IFtan;. (D.4)
k=1 i=1
Applying the expression for n* in equation (3.13), and the equation Zf\;_lk(]\f +1—2i) = k(N — k), we get
N N N-1
N —k k(N — k)
k— k— - m a
I;E[Pk_l] => ! <P0 —~ —G5> > ——— LIGOT (B + raf) .

k=1 k=1

Similarly by using equation (D.3), we may show that

N N-1 N—-1N-Ek
SN +1=2k)E[Peca] =Y (N =2k —1)L"P) - N —2(k+i) 4+ 1) L*'Gn}
k=1 k=0 k=1 =1

Applying the expression of n* in equation (3.13) and the equations

2
B

(N =2(k+i)+ 1) = —k(N — k),

Z =
Tl
= [l

(N =2(k+d)+ 1)(N+1-2i) = (N;k)(N2—1—2k(k+N)),

i=1

the value of Zi\;l(]\f + 1 = 2k)E[P;_1] equals

N-1 N—-1N—-k

, ket o S (N1 —=20) 1 4 .
ZO N =2k —1)LFPy — kl;(]\f—?(k—i—z)—i—l)L G<N—f® (raf + EY)
N-1 N-1 N-1
Z N—2k—-1)LFPy + k(NTk N? —1 = 2k(k + N)LF'GO™ (raf + E%).
=0 k=1 k=1

We use this quantity to compute the third term in the right-hand-side of equation (D.2). Therefore, the
expected execution cost in (D.2) is reduced to (D.1). O

When (E% +71a§) = 0, the execution strategy (3.13) is reduced to the naive strategy. Therefore, equation
(D.1) with (E% + 7af) = 0 yields the expected execution cost of the naive strategy.

Corollary D.1. The (true) expected execution cost of the naive strategy n equals

N
E|P/S-> Pl
k=1

_ . H _
:STPO—I—STWS—F ZLk 1<—G5 P0>. (D.5)
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